Two classes of two-weight linear codes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weight distributions of two classes of linear codes

Let Fq be the finite field with q = p m elements, where p is an odd prime and m is a positive integer. Let u be a positive integer and Tr be the trace function from Fq to Fp. We define a p-ary linear codes CD = {c(a, b) = (Tr(ax+ by))(x,y)∈D : a, b ∈ Fq}, where D = {(x, y) ∈ Fq\{(0, 0)} : Tr(x1 + y u+1) = 0} and N1 = 1 or 2. In this paper, we use Weil sums to investigate weight distributions of...

متن کامل

Two classes of ternary codes and their weight distributions

In this paper we describe two classes of ternary codes, determine their minimum weight and weight distribution, and prove their properties. We also present four classes of 1-designs that are based on the classes of ternary codes.

متن کامل

Two new classes of quantum MDS codes

Let p be a prime and let q be a power of p. In this paper, by using generalized Reed-Solomon (GRS for short) codes and extended GRS codes, we construct two new classes of quantum maximum-distanceseparable (MDS) codes with parameters [[tq, tq − 2d+ 2, d]]q for any 1 ≤ t ≤ q, 2 ≤ d ≤ ⌊ tq+q−1 q+1 ⌋+ 1, and [[t(q + 1) + 2, t(q + 1)− 2d+ 4, d]]q for any 1 ≤ t ≤ q− 1, 2 ≤ d ≤ t+2 with (p, t, d) 6= (...

متن کامل

Two-weight and three-weight codes from trace codes over

We construct an infinite family of two-Lee-weight and three-Lee-weight codes over the non-chain ring Fp+uFp+ vFp+uvFp, where u 2 = 0, v = 0, uv = vu. These codes are defined as trace codes. They have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using Gauss sums. With a linear Gray map, we obtain a class of abelian three-weight codes and two-weight codes...

متن کامل

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2016

ISSN: 1071-5797

DOI: 10.1016/j.ffa.2015.12.002